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Abstract
We investigate the PT-symmetry of the quantum group invariant XXZ chain. We
show that the PT-operator commutes with the quantum group action and also
discuss the transformation properties of the Bethe wavefunction. We exploit
the fact that the Hamiltonian is an element of the Temperley–Lieb algebra
in order to give an explicit and exact construction of an operator that ensures
quasi-Hermiticity of the model. This construction relies on earlier ideas related
to quantum group reduction. We then employ this result in connection with
the quantum analogue of Schur–Weyl duality to introduce a dual pair of C-
operators, both of which have closed algebraic expressions. These are novel,
exact results connecting the research areas of integrable lattice systems and
non-Hermitian Hamiltonians.

PACS numbers: 75.10.Pq, 03.65.Fd, 03.65.−w, 05.30.−d

1. Introduction

Recent years have seen growing interest in non-Hermitian Hamiltonians and their interpretation
in quantum mechanics (see [1–5] and references therein). There are several motivations to
study such systems. Non-Hermitian Hamiltonians appear to be physically interesting: they
can arise in connection with perturbative or effective descriptions of physical phenomena.
More generally, it has been suggested that Hermiticity should not be the decisive criterion in
deciding whether the associated quantum mechanics system is physically sound, but rather
the reality of its spectrum (see the recent reviews [6, 7] and references therein). However,
in order to ensure the unitarity of the time evolution operator one is necessarily led back to
the requirement of a Hermitian Hamiltonian. The way out is the introduction of a new inner
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product on the Hilbert space of quantum states with respect to which the Hamilton operator
becomes Hermitian.

To be concrete, let us consider a Hamiltonian H defined on a Hilbert space H with inner
product 〈·, ·〉 : H × H → C. Suppose H is non-Hermitian with respect to the inner product
〈·, ·〉 , i.e.

H �= H ∗ (1)

with ∗ denoting the Hermitian adjoint (or complex conjugate transpose in the case of matrices).
Provided there exists a self-adjoint, invertible and positive operator η : H → H such that

ηH = H ∗η, (2)

one can introduce another, different inner product

〈·, ·〉η : H × H → C, 〈x, y〉η := 〈x, ηy〉 (3)

with respect to which the Hamiltonian is now Hermitian,

〈x,Hy〉η = 〈Hx, y〉η, x, y ∈ H. (4)

Since η > 0, it possesses a unique positive square root which we denote by η
1
2 : H → H.

Thus, one might alternatively consider the Hamiltonian

H̃ = η
1
2 Hη− 1

2 (5)

which is Hermitian with respect to the original inner product 〈·, ·〉,
H̃ ∗ = η− 1

2 H ∗η
1
2 = H̃ . (6)

Non-Hermitian Hamiltonians which allow for the existence of such a positive map η have
been named quasi-Hermitian in the literature, see [8, 9] and references therein. Note that
while the property of quasi-Hermiticity obviously ensures the reality of the spectrum of H, the
converse is not true. In fact, in this paper we will consider a non-Hermitian Hamilton operator
which for special values of a coupling parameter has a real spectrum but does not allow for a
positive map η satisfying (2) unless a reduction of the state space is carried out first.

It is thus desirable for practical purposes to find a simple criterion which allows one to
decide whether a given non-Hermitian Hamiltonian might in fact be quasi-Hermitian. Based
on a large number of examples, it has been suggested that such a criterion is PT -symmetry,
namely the invariance of the Hamiltonian under a simultaneous change of parity P and time
reversal T (see the review [6] and references therein). While this has proved to be an
effective way of singling out many quasi-Hermitian Hamilton operators within the pool of
non-Hermitian ones, PT -symmetry of the Hamiltonian alone is not mathematically sufficient
to establish even the reality of the spectrum due to the fact that time reversal is an anti-linear
operator [10].

Nevertheless, in this paper we also investigate a Hamiltonian which is PT -symmetric.
This symmetry is in our case even distinguished in light of an underlying algebraic structure
which we are going to exploit to establish its quasi-Hermiticity. Thus, our example will
confirm once more the usefulness of PT -symmetry as a pre-selection tool for quasi-Hermitian
Hamilton operators.

Alternative approaches to constructing η have been pursued in the literature (for references
we refer the reader to the reviews [6, 7]). One is based on the explicit solution of the eigenvalue
problem of the Hamiltonian and through the construction of bi-orthonormal systems. Other
approaches rest on the perturbation theory and the Baker–Campbell–Hausdorff formula. Both
methods have practical limitations, in particular the former suffers from the fact that one
seldom has exact expressions for all the eigenfunctions. It is in this context that integrable



PT symmetry on the lattice: the quantum group invariant XXZ spin chain 8847

or exactly solvable systems play a special role as they allow one in principle to obtain exact,
non-perturbative information. Previous applications of integrable systems in the context of
non-Hermitian Hamiltonians include, for example, the correspondence between integrable
systems and ordinary differential equations (see [11] for a recent review). One might also
directly consider non-Hermitian deformations of integrable systems respecting PT -symmetry;
recent examples are discussed in [12, 13].

In this paper, we shall consider a well-known integrable quantum Hamiltonian [14, 17, 18]
which for certain values of a parameter q is non-Hermitian. The novel aspect here is that we
introduce the concept of PT -symmetry and the so-called C-operator for a discrete lattice
model. Namely, we are going to consider the quantum group invariant XXZ spin-chain
Hamiltonian

H = 1

2

N−1∑
i=1

{
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �+
(
σ z

i σ z
i+1 − 1

)}
+ �−

(
σ z

1 − σ z
N

)
2

. (7)

Here, the anisotropy parameters �± are defined in terms of the single variable q,

�± = q ± q−1

2
, (8)

and
{
σ

x,y,z

i

}
denote the Pauli matrices acting on the ith site of the spin chain represented by

the state space H = (C2)⊗N . We will focus on the case when the complex parameter q lies on
the unit circle S

1; this implies that H is non-Hermitian,

q ∈ S
1 : H �= H ∗. (9)

This case of q on the unit circle is of particular interest, since then the corresponding lattice
model is believed to correspond in the thermodynamic limit to a conformal field theory with
central charge [14, 17]

c = 1 − 6

(r − 1)r
, q = exp

( iπ

r

)
. (10)

When r ∈ N, r > 2, i.e. q is a root of unity, the above central charge value matches that
from the minimal unitary series. Besides this connection with the conformal field theory,
which has fuelled ongoing interest in this particular spin-chain Hamiltonian, there are several
algebras which play an important role in the eigenvalue problem of this Hamiltonian. One is
its quantum group invariance, the other is its connection with the Hecke and Temperley–Lieb
algebras. We will use the representation theory of these algebras to obtain explicit and exact
expressions for η. To our knowledge, there are only a few, simple systems where this has been
previously achieved (see the reviews [6, 7]).

Our aim is to connect the discussion of quasi-Hermitian Hamilton operators and PT -
symmetry with a procedure known as quantum group reduction at roots of unity in the
integrable lattice models community. While this latter procedure was introduced a long time
ago [19], its connection with the more recent discussion of non-Hermitian Hamilton operators
has not been previously investigated. Moreover, we will derive for this particular case novel
expressions for η in terms of the Hecke algebra, thus giving a purely algebraic definition of
the new Hilbert space structure in which (5) is Hermitian. We will also consider a special
segment of the unit circle where q is not a root unity. For this case, no reduction of the state
space is required.

The content of this paper is as follows. In section 2, we recall the relevant algebraic
structures. We hope that this section will keep the paper self-contained and make it more
accessible to a wider audience, in particular the community working on non-Hermitian
Hamilton operators. In section 3, we introduce the concept of PT -symmetry on the lattice,
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explaining its connection with quasi-Hermiticity. This exposition is aimed primarily at
researchers in the field of integrable systems. We go on to discuss the relation of the P
and T operators with the action of our two algebras. We also give the action of PT on the
Bethe wavefunction. In section 4, we give a construction of η in terms of the path basis for q

a root of unity (see equation (87)). In section 5, we define a C operator as C = Pη and give
a simple, purely algebraic realization of it in terms of a certain braid operator associated with
the Hecke algebra. We also define another operator C ′ that has properties that are similar to
C and yet is loosely speaking ‘dual’ to it. In particular, C is an element of the Hecke algebra
that commutes with the quantum group, while C ′ is an element of the quantum group that
commutes with the Hecke algebra. Finally, we make some concluding comments in section 6.

2. The XXZ chain and its related algebras

As mentioned in the introduction, we will exploit several algebraic structures associated with
the spin-chain Hamiltonian in order to establish its quasi-Hermiticity. In this section, we
review the definition of these algebras and their relation to the Hamiltonian to keep this
paper self-contained. For details concerning the definitions of the various algebras and their
properties we refer the reader to e.g. [20].

2.1. The Temperley–Lieb and Hecke algebra

To make contact with the first algebra, we rewrite the spin-chain Hamiltonian (7) in terms of
‘local’ operators which only contain nearest-neighbour interactions,

H =
N−1∑
i=1

Ei, Ei = σx
i σ x

i+1 + σ
y

i σ
y

i+1

2
+ �+

σ z
i σ z

i+1 − 1

2
+ �−

σ z
i − σ z

i+1

4
. (11)

Let V = C
2 be a two-dimensional complex vector space, then these ‘local Hamiltonians’ Ei

provide a particular representation

πT L : T LN(q) → End V ⊗N, ei 	→ πT L(ei) := Ei (12)

of an abstract algebra T LN(q), known as the Temperley–Lieb algebra.

Definition 2.1 (Temperley–Lieb Algebra). The Temperley–Lieb algebra T LN(q) is obtained
from N − 1 generators {e1, e2, . . . , eN−1} satisfying the commutation relations

e2
i = −(q + q−1)ei, eiei±1ei = ei,

(13)
eiej = ej ei, |i − j | > 1.

In the present context, the Temperley–Lieb algebra plays the role of a spectrum generating
algebra. Note that the representation defined by (11) is non-Hermitian for q on the unit circle.
This is most easily seen when expressing the Temperley–Lieb generators as 4 by 4 matrices
acting on the ith and (i + 1)th factor in the spin chain,

Ei =




0 0 0 0
0 −q−1 1 0
0 1 −q 0
0 0 0 0




i,i+1

�= Ēi = E∗
i . (14)

The irreducible representations of the Temperley–Lieb algebra will be discussed in the
subsequent sections of this paper and in appendix A.
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The Temperley–Lieb algebra is closely related to another algebra which can be thought
of as a generalization or q-deformation of the group algebra of the symmetric group.

Definition 2.2 (Hecke algebra). The Hecke algebra HN(q) is obtained from N − 1 generators
{bi}N−1

i=1 obeying the defining relations,

bib
−1
i = b−1

i bi = 1, bibi+1bi = bi+1bibi+1,
(15)

bibj = bjbi, |i − j | > 1

and the quadratic relation

(bi + q)(bi − q−1) = 0. (16)

HN(q) is the group algebra of Artin’s braid group factored by relation (16). Hecke and
Temperley–Lieb algebras are related by the following surjective homomorphism,

ϕ : HN(q) → T LN(q) : bi 	→ q−1 + ei and b−1
i 	→ q + ei . (17)

Using this homomorphism, we extend the representation of the Temperley–Lieb algebra (11)
to the Hecke algebra

πH : HN(q) → End V ⊗N, bi 	→ πH(bi) := (πT L ◦ ϕ)(bi) (18)

and obtain

bi 	→ πH(bi) := Bi =




q−1 0 0 0
0 0 1 0
0 1 q−1 − q 0
0 0 0 q−1




i,i+1

. (19)

Our motivation to introduce the Hecke algebra will become clear when constructing the new
Hilbert space structure with respect to which the Hamiltonian (7) becomes Hermitian. In a
purely algebraic context, the Hecke algebra is closely connected to the intertwiners of the
quantum group Uq(sl2) which describes the degenerate eigenspaces of the Hamiltonian (7).

2.2. Quantum group invariance

The spin-chain Hamiltonian (7) possesses several symmetries. In the present context, the most
distinguished is its quantum group invariance, which we shall employ in order to define a new
Hilbert space structure in which H becomes Hermitian.

Definition 2.3 (quantum group). The quantum group Uq(sl2) is a quasi-triangular Hopf
algebra generated by the Chevalley–Serre generators {s±, q±sz}. The latter are subject to the
commutation relations

qsz

q−sz = q−sz

qsz = 1, qsz

s±q−sz = q±1s±, [s+, s−] = [2sz]q := q2sz − q−2sz

q − q−1
.

(20)

The Hopf algebra structure includes the notions of coproduct � : Uq(sl2) → Uq(sl2) ⊗
Uq(sl2),

�(s±) = qsz ⊗ s± + s± ⊗ q−sz

, �
(
q±sz) = q±sz ⊗ q±sz

, (21)

antipode γ : Uq(sl2) → Uq(sl2)

γ
(
q±sz) = q∓sz

, γ (s±) = −q±1s±, (22)
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and co-unit ε : Uq(sl2) → C,

ε
(
q±sz) = 1, ε(s±) = 0. (23)

In the following, we will work with the familiar two-dimensional spin-1/2 representation
π : Uq(sl2) → End V, V = C

2, in terms of Pauli matrices, i.e.

π : s± 	→ σ± and q±sz 	→ q±σ z

. (24)

The action of the quantum group generators on the spin chain V ⊗N is then obtained via
successive application of the coproduct by defining �n = (�⊗1)�n−1 starting with �2 ≡ �,

πU : Uq(sl2) → End V ⊗N, x 	→ π⊗N(�N(x)), N > 1. (25)

We shall denote the images of the Chevalley–Serre generators {s±, q±sz} under πU by capital
letters. They read explicitly

q±sz 	→ πU

(
q±sz) ≡ q±Sz

, Sz = 1

2

N∑
i=1

σ z
i (26)

and

s± 	→ πU(s±) ≡ S± =
N∑

i=1

q
σz

2 ⊗ · · · ⊗ σ±
i th

⊗ q− σz

2 · · · ⊗ q− σz

2 . (27)

For q on the unit circle, these generators are non-Hermitian. In fact, one has the relation

(S±)∗ = S∓
op ≡ π⊗N

(
�

op
N (s∓)

)
(28)

where S∓
op are the quantum group generators associated with the opposite coproduct,

�op(s±) = q−sz ⊗ s± + s± ⊗ qsz

. (29)

We shall refer to the associated Hopf algebra as U
op
q (sl2) . The permuted Hecke algebra

generators ri = τibi, with τi the permutation operator in the ith and (i + 1)th factors, relate
the two coproduct structures (21) and (29),

ri

(
σ±

i ⊗ q−σ z
i+1 + qσz

i ⊗ σ±
i+1

) = (
σ±

i ⊗ qσz
i+1 + q−σ z

i ⊗ σ±
i+1

)
ri . (30)

The matrix ri is referred to as a quantum group intertwiner due to the above relation; it is also
commonly called the ‘R-matrix’. Both versions of the quantum group appear in the present
context: Uq(sl2) is the symmetry algebra of the Hamiltonian (7), and U

op
q (sl2) is the symmetry

algebra of its Hermitian adjoint H ∗,

[H,πU(Uq(sl2))] = [
H ∗, πU

(
U op

q (sl2)
)] = 0. (31)

These commutation relations are a direct consequence of the following relation which is a
quantum analogue of the Schur–Weyl duality.

Theorem 2.1 (Jimbo [21]). Let πU : Uq(sl2) → End V ⊗N and πH : HN(q) → End V ⊗N

be the representations defined in (25) and (12). Denote by U ′ and H′ the commutants of the
operator algebras U = πU(Uq(sl2)) and H = πH (HN(q)) in End V ⊗N , respectively. Then
we can identify

U ′ = H and H′ = U . (32)

In the limit q → 1 this gives the familiar Schur–Weyl duality with respect to the symmetric
group. Note that in the simple case of sl2 and V = C

2 considered here, we can specialize
in (32) to the Temperley–Lieb algebra. This is due to the fact that for the local spin-1/2
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representation (19), and only for this representation, the homomorphism (17) in theorem 2.1
can be ‘inverted’, i.e. the relation Ei = q−1 −Bi yields a representation of the Temperley–Lieb
algebra.

The first relation in (31) now follows immediately from theorem 2.1, and the second is
obtained when taking the Hermitian adjoint and employing H(q)∗ = H(q−1) together with
(28). Below we will make further use of the duality (32) when discussing the quasi-Hermiticity
properties of the Hamiltonian (7) and when introducing a new Hilbert space structure with
respect to which H is Hermitian. This concludes our brief review of the algebraic structures
relevant for our discussion.

3. PT symmetry on the lattice

We now discuss PT -invariance for the spin chain by introducing parity and time reversal
operators on the lattice. Their action is then related to the quantum group invariance of the
Hamiltonian and to the transformation properties of a discrete wavefunction ψ .

3.1. Definitions

The Hamiltonian (7) acts on the N-fold tensor product of a two-dimensional space V = C
2

with the orthonormal basis vectors v 1
2

= (1
0

)
and v− 1

2
= (0

1

)
. We then have the following

orthonormal basis in the Hilbert space H = V ⊗N ,

{|α1, . . . , αN 〉 ≡ vα1 ⊗ · · · ⊗ vαN
, αi = ±1/2}. (33)

Definition 3.1 (parity and time-reversal operator). On the above set of basis vectors we define
the linear operator P by setting

P |α1, . . . , αN 〉 = |αN, αN−1, . . . , α1〉. (34)

In contrast, the operator T acts on the basis vectors as the identity,

T |α1, . . . , αN 〉 = |α1, . . . , αN 〉, (35)

but is defined to be antilinear, such that

T λ|α1, . . . , αN 〉 = λ̄ |α1, . . . , αN 〉 , λ ∈ C. (36)

Thus, any matrix A (such as the Hamiltonian A = H ) is transformed into its complex conjugate
under the adjoint action of T,

T AT = Ā. (37)

Note that in the particular case considered here the Hamiltonian is symmetric, Ht = H , and
we therefore have the identity H̄ = H ∗. Together with the crucial relation

PHP = H ∗, (38)

which follows simply from definitions (7) and (34), we obtain as a consequence

[PT,H ] = 0. (39)

Thus, the quantum group invariant XXZ Hamiltonian (7) is PT -invariant. However, only if all
the eigenfunctions can be chosen to be simultaneous eigenfunctions of the PT -operator can
one conclude that the spectrum of H must be real.
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Table 1. Commutation relations.

Operator Temperley–Lieb Quantum group

Parity reversal PEkP = E∗
N−k PS±P = S±

op

Time reversal T EkT = E∗
k T S±T = S±

op

Spin reversal REkR = E∗
k RS±R = S∓

op

3.2. The adjoint PT action on the quantum group and Temperley–Lieb algebra

The Chevalley–Serre generators have the following behaviour under the adjoint action of P
and T:

PS±P = T S±T =
N∑

i=1

q− σz

2 ⊗ · · · q− σz

2 ⊗ σ±
i th

⊗ q
σz

2 ⊗ · · · q σz

2 = S±
op. (40)

Thus, the action of PT commutes with that of the quantum group, and as such PT is
distinguished from other symmetries of the Hamiltonian. For example, we could have
employed the spin-reversal operator

R =
N∏

n=1

σx
n (41)

which leads to additional PR and T R-symmetries,

RHR = H ∗ and [PR,H ] = [T R,H ] = 0. (42)

Notice, however, that the latter do not commute with the quantum group generators,

RS±R = S∓
op, PRS±PR = RT S±RT = S∓. (43)

The Temperley–Lieb algebra generators, on the other hand, are not PT -invariant. In the
representation (11) they transform according to

PEkP = E∗
N−k = T EN−kT and so PT Ek = EN−kPT . (44)

For the spin-reversal operator we obtain the identities

REkR = E∗
k , PREkPR = EN−k, RT EkRT = Ek. (45)

Note that the PR symmetry is insufficient to introduce a new Hilbert space structure: PR is
not a positive operator, whence we cannot use it to define an alternative inner product. In
order to arrive at the latter we need the η-operator which we discuss below. Let us summarize
the various transformation properties of the respective algebra generators in table 1. In our
subsequent discussion we will make frequent use of these commutation relations.

3.3. PT symmetry and Bethe’s wavefunction

The term PT symmetry is used in two senses in the quantum mechanics literature: in the weak
sense it means simply that [PT,H ] = 0; in the strong sense the term means that in addition
PT |ψ〉 ∝ |ψ〉 for all eigenvectors |ψ〉 of H. Clearly, this latter property does not follow from
[PT,H ] = 0. In particular, if the energy eigenvalue of |ψ〉 is complex, then the antilinearity
of T means that the eigenvalue of PT |ψ〉 is its complex conjugate. If a system displays PT

symmetry in the weak but not the strong sense, then it is said to display spontaneous breaking
of PT symmetry [10].
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In this subsection, we discuss the transformation properties of the eigenvectors of the
Hamiltonian H under PT -symmetry. To this end, the formalism of the coordinate Bethe
ansatz turns out to be most convenient. This will allow us to determine whether there is
a spontaneous breakdown of PT -symmetry and further motivate our existing definition of
the parity and time reversal operators by relating them to the transformation behaviour of a
‘discrete wavefunction’ describing the Bethe vectors.

The coordinate Bethe ansatz for the Hamiltonian (7) has been previously discussed in the
literature [14, 17] and we refer the reader to these works for the details of the derivation of the
Bethe ansatz equations. We emphasize, however, that PT -symmetry has not been discussed
in these works and this is the novel aspect which we want to highlight here.

Before we review the coordinate Bethe ansatz in the context of PT -symmetry, we first
introduce the PT -action on discrete wavefunctions. Quite generally, any vector |ψ〉 in the
Hilbert space H = V ⊗N with n down-spins is in one-to-one correspondence with a discrete
wavefunction ψ(x1, . . . , xn) according to the relation

|ψ〉 =
∑

1�x1<...<xn�N

ψ(x1, . . . , xn)σ
−
x1

· · · σ−
xn

∣∣ 1
2 , . . . , 1

2

〉
, (46)

where |ψ(x1, . . . , xn)|2 can be interpreted as the probability to find the n down-spins located at
the lattice sites x1, . . . , xn. According to our previous definitions (34), (35) the transformation
behaviour of the wavefunction under parity reversal is

ψ(x1, . . . , xn)
P→ ψ(N + 1 − xn, . . . , N + 1 − x1). (47)

Time reversal simply amounts to complex conjugation,

ψ(x1, . . . , xn)
T→ ψ̄(x1, . . . , xn). (48)

These two transformation properties are clearly analogues of the transformation properties
of a standard continuous wavefunction describing a many-particle system confined to a finite
interval on the real line.

The eigenvectors of the Hamiltonian (7) corresponding to highest weight vectors with
respect to the quantum group symmetry (31) can be described in terms of Bethe’s wavefunction,
ψ = ψk, which can be interpreted as a superposition of reflected plane waves with quasi-
momenta k = (k1, . . . , kn), and is defined by

ψk(x1, . . . , xn) =
∑
p,ε

(−1)|p|A
(
ε1kp1 , . . . , εnkpn

)
ei(ε1kp1 x1+···+εnkpn xn). (49)

The sum runs over all permutations p = (p1, . . . , pn) ∈ Sn of the index set (1, . . . , n) as well
as all possible sign changes ε = (ε1, . . . , εn), εi = ±1 (due to the reflection at the boundaries
of the finite spin chain). The symbol |p| indicates the sign ±1 of the permutation, with the
choice |(1, 2, . . . , n)| = +1. It is shown in [14] that the coefficients A(k1, . . . , kn) have the
form

A(k1, . . . , kn) =
∏
j

β(−kj )
∏
j<l

B(−kj , kl) e−ikl , (50)

where we have introduced the functions

β(k) = (1 − q e−ik) ei(N+1)k (51)

and

B(k1, k2) = s(−k1, k2)s(k2, k1), s(k1, k2) := (1 − (q + q−1) eik1 + ei(k1+k2)). (52)
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For later use we note the simple identities (note that we have q̄ = q−1)

β(−k̄) = −q−1 ei(2N+1)kβ(−k), B(−k̄1, k̄2) = B(−k2, k1) e−i(k1+k2)
s(−k2, k1)

s(k1,−k2)
. (53)

In order that |ψk〉 be an eigenvector, it is necessary that the quasi-momenta k1, . . . , kn satisfy
the Bethe ansatz equations

e2iNkj =
∏
l �=j

B(−kj , kl)

B(kj , kl)
. (54)

The corresponding eigenvalue of the Hamiltonian is

λ = (N − 1)�+ + 4
n∑

j=1

(cos kj − �+). (55)

The analytic solutions to the Bethe ansatz equations are not known. However, we can discuss
in abstract terms the action of parity and time reversal on the Bethe wavefunction. We have

PT ψk(x1, . . . , xn) =
∑
p,ε

(−1)|p|A
(
ε1kp1 , . . . , εnkpn

)
e−i(ε1 k̄p1 (N+1−xn)+···+εnk̄pn (N+1−x1))

= −
∑
p,ε

(−1)|p|A
(
εnkpn

, . . . , ε1kp1

)
e−i(N+1)(ε1 k̄p1 +···+εnk̄pn ) ei(ε1 k̄p1 x1+···+εnk̄pn xn).

The minus sign comes from the sign difference of the two permutations (p1, . . . , pn) and
(pn, . . . , p1). Now let us assume that the Bethe roots ki consist of m complex pairs (ki, ki ′)

of the form k̄i = ±ki ′ , and n − 2m real roots. This assumption is certainly consistent with the
reality of the spectrum due to (55). Under this assumption, we can write

PT ψk(x1, . . . , xn)

= (−)1+m
∑
p,ε

(−1)|p|A
(
εnk̄pn

, . . . , ε1k̄p1

)
e−i(N+1)(ε1kp1 +···+εnkpn ) ei(ε1kp1 x1+···+εnkpn xn).

(56)

It follows that we have PT ψk(x1, . . . , xn) ∝ ψk(x1, . . . , xn) if

A(k1, . . . , kn) ∝ A(k̄n, . . . , k̄1) e−i(N+1)(k1+···kn) (57)

for any set of k = (k1, . . . , kn) satisfying the Bethe ansatz equations (54). This is a
consequence of the following proposition.

Proposition 3.1. If k1, . . . , kn satisfy the Bethe equations (54), we have

A(k̄1, . . . , k̄n) = (−q)−n ei(N+1)(k1+···+kn)A(kn, . . . , k1). (58)

Proof. Using the above identities (53) for β̄ and B̄, we have

A(k̄1, . . . , k̄n) = (−q)−n ei(2N+1)(k1+···+kn)
∏
j

β(−kj )
∏
j<l

B(−kl, kj ) e−ikj
s(−kl, kj )

s(kj ,−kl)
. (59)

The next step is to take the product of the Bethe equations over all j = 1, . . . , n. This gives

e2iN(k1+···+kn) =
∏
j

∏
l �=j

s(kj , kl)s(kl,−kj )

s(−kj , kl)s(kl, kj )
=

∏
j

∏
l �=j

s(kl,−kj )

s(−kj , kl)
,

=
∏
j<l

s(kl,−kj )

s(−kj , kl)

∏
j<l

s(kj ,−kl)

s(−kl, kj )
=

∏
j<l

s2(kj ,−kl)

s2(−kl, kj )
, (60)
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where we have used the identity s(k1, k2) = ei(k1+k2)s(−k2,−k1) in the last step. Then we
have ∏

j<l

s(−kl, kj )

s(kj ,−kl)
= e−iN(k1+···+kn). (61)

The left-hand side of this expression appears in equation (59), and after substituting we arrive
at

A(k̄1, . . . , k̄n) = (−q)−n ei(N+1)(k1+···+kn)
∏
j

β(−kj )
∏
j<l

B(−kl, kj ) e−ikj

= (−q)−n ei(N+1)(k1+···+kn)A(kn, . . . , k1) (62)
�

If follows that for each Bethe vector with n down spins (i.e. Sz eigenvalue N/2 − n), m
complex pairs (ki, ki ′) of the form k̄i = ±ki ′ and n − 2m real roots, we have

PT ψk(x1, . . . , xn) = (−1)1+m(−q)−nψk(x1, . . . , xn) (63)

and hence

PT |ψk〉 = (−1)1+m(−q)−n|ψk〉. (64)

Thus, for this particular set of eigenvectors at least, and—because of (40)—for their associated
degenerate eigenspaces, we can conclude that PT -symmetry is not spontaneously broken.
However, since it is generally difficult to verify the precise nature of the Bethe roots (i.e.
whether only real or complex pairs of them occur) as well as to rigorously prove that the Bethe
ansatz yields the complete set of eigenvectors, alternative arguments have to be employed to
prove the reality of the spectrum of (7).

4. Exact construction of the quasi-Hermiticity operator η

As outlined in the introduction, we need to find a positive definite, Hermitian and invertible
operator η satisfying (2) in order to define a new Hilbert space structure (3) with respect
to which the Hamiltonian (7) becomes Hermitian. For many non-Hermitian systems in the
literature, this has been achieved by using bi-orthonormal systems of Hamiltonian eigenvectors.
While we will not follow this approach in our construction of η, because the solutions of the
Bethe ansatz equations (54) are in general unknown, let us briefly make contact with this
method as we will repeatedly refer to it in our subsequent discussion.

To start with, we note that the existence of a map η with the aforementioned properties
implies that H andH ∗ have real spectrum. However, the converse of this statement is in
general not true. Suppose we are given a finite-dimensional non-Hermitian Hamiltonian H,
such that H and H ∗ have purely real spectra, Spec H = Spec H ∗ ⊂ R. Then there exist two
corresponding sets of eigenvectors {φλ}λ∈Spec H of H and {ψλ}λ∈Spec H of H ∗ such that

Hφλ = λφλ and H ∗ψλ = λψλ. (65)

Making the additional assumption that the eigenvectors can be normalized such that the
relations

〈φλ,ψλ′ 〉 = δλ,λ′ and
∑

λ∈Spec H

|φλ〉〈ψλ| = 1 (66)

both hold, one can then define η to be the following sum over projectors

η =
∑

λ∈Spec H

|ψλ〉〈ψλ| =

 ∑

λ∈Spec H

|φλ〉〈φλ|

−1

. (67)
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The above map η satisfies all necessary requirements by construction. We stress, however, that
the crucial assumption concerning the existence of a bi-orthonormal system of eigenvectors
satisfying (66) is not always satisfied.

In particular, the spin-chain Hamiltonian (7) provides a counterexample. Namely, if we
choose q to be a primitive root of unity, then one can verify that the Hamiltonian possesses
non-trivial Jordan blocks. As a result there always exist eigenvalues λ ∈ Spec H for which
the associated eigenvectors φλ,ψλ are orthogonal,

〈φλ,ψλ〉 = 0. (68)

The connection between such states and non-trivial Jordan blocks has been discussed, for
example, in [15, 16]. The occurrence of such states in the present context can be understood
in terms of representation theory [17]. Due to (68), the assumption (66) is violated and one
only finds a positive semi-definite matrix η, η � 0, when q is a root of unity. The solution to
this problem of defining a Hermitian version of the quantum group invariant XXZ Hamiltonian
at roots of unity is to remove the aforementioned subset of states from the Hilbert space,
making η positive definite, η > 0, and, consequently, the Hamiltonian diagonalizable. This
procedure is known as ‘quantum group reduction at roots of unity’. This reduction procedure
has been developed previously in the literature on integrable systems [19]. The new aspect of
our discussion here is its relation to the ideas of quasi-Hermiticity. Developing this connection
will put us into the position to present in the last part of this paper a novel algebraic formulation
of the Hilbert space structure which makes (7) Hermitian.

4.1. The path basis

In order to reduce the state space we first introduce a different set of basis vectors. The new set
of basis vectors which we are going to construct is dictated by the quantum group invariance
of the Hamiltonian and has the advantage that the set of ‘problematic’ states (68) can be easily
identified. For the moment, we keep q = exp(iπ/r) generic, but shall specialize below to
integer values r � 3.

The new basis states will be obtained by successively decomposing tensor products of
Uq(sl2) representations into the finite-dimensional irreducible representations πj : Uq(sl2) →
End C

2j+1 with j ∈ 1
2 N. Up to isomorphism the latter are given by

πj (s
±)|j,m〉 = √

[j ∓ m]q[j ± m + 1]q |j,m ± 1〉,
(69)

πj (q
sz

)|j,m〉 = qm|j,m〉, m = −j,−j + 1, . . . , j − 1, j.

In analogy with the terminology used for sl2, the half-integer j labelling the representation is
referred to as ‘spin’. Following [19, 18], we now introduce a ‘path basis’ using the q-deformed
Clebsch–Gordan (CG) coefficients defined implicitly via the embedding

ı12 : πJ ↪→ πj1 ⊗ πj2 , |J,M〉 ↪→
∑

m1+m2=M

∣∣∣∣ j1 j2 J

m1 m2 M

∣∣∣∣
q

|j1,m1〉 ⊗ |j2,m2〉. (70)

The relevant CG coefficients for the spin-1/2 chain are computed via the action of the coproduct
(see appendix C),∣∣∣∣j 1

2 j + 1
2

m α m + α

∣∣∣∣
q

= q−αj+ m
2

(
[j + 2αm + 1]

[2j + 1]

) 1
2

(71)

and ∣∣∣∣j 1
2 j − 1

2
m α m + α

∣∣∣∣
q

= 2αqα(j+1)+ m
2

(
[j − 2αm]

[2j + 1]

) 1
2

. (72)
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Now let j = (j0, j1, j2, . . . , jN) be a path on the sl2-Bratelli diagram, i.e. the set of sequences
specified as follows:

� = {j = (j0, j1, j2 . . . , jN)|j0 = 0, jk � 0, jk+1 = jk ± 1/2}. (73)

Here we have followed the common convention to root the paths at j0 = 0 which forces
j1 = 1/2. Next, we define the vectors

|j,m〉 =
∑

|α|=m

|α〉 〈α|j,m〉 , m = −jN,−jN + 1, . . . , 0, . . . , jN (74)

with

〈α|j,m〉 =
N−1∏
k=1

∣∣∣∣ jk
1
2 jk+1∑

i�k αi αk+1
∑

i�k+1 αi

∣∣∣∣
q

, m = |α| :=
N∑

k=1

αk = Sz. (75)

As long as q is not a root of unity the above basis is well defined. If r is an integer � 3,
however, one has to constrain the set of allowed paths to the restricted Bratelli diagram

�(r) := {j ∈ �|2jk + 1 < r, k = 1, . . . , N}. (76)

This restriction ensures that no singularities or cancellations occur in the CG coefficients
due to the factors [2jk + 1]q = [r]q = 0. It is precisely the reduction of the state space by
the constraint (76) which removes the states (68) mentioned above in the context of quasi-
Hermiticity. As we will see below, we can then explicitly construct a positive map η on the
reduced state space.

4.2. Action of the Temperley–Lieb algebra in the path basis

The introduction of the path basis is not only motivated by aspects of quasi-Hermiticity, but
is rather natural from an algebraic point of view. It allows us to factor out the quantum group
action which commutes with the Hamiltonian and spans its degenerate eigenspaces. In fact,
given a fixed path j on the Bratelli diagram the action of the quantum group Uq(sl2) will
not change this path but only modify the corresponding ‘magnetic quantum number’ m in the
associated path state (74), i.e. each path j = (j0 = 0, j1 = 1/2, j2, . . . , jN) ∈ � corresponds
to an irreducible quantum group module of spin jN given by (69).

The Hamiltonian, on the other hand, can only mix paths with the same end point jN and
leaves m unchanged due to (31). The same holds true for the generators of the Temperley–
Lieb algebra. Both assertions follow immediately from the quantum version of Schur–Weyl
duality (32). They can be explicitly verified by computing the action of the Temperley–Lieb
generators (11) in the path basis from (71), (72) and (74) (see appendix C for the relevant
identities). One finds for k = 2, . . . , N − 1 the following result,

Ek|j,m〉 = δjk−1,jk+1

∑
j ′=jk−1±1/2

√
[2jk + 1]q[2j ′ + 1]q

(−)jk−j ′+1[2jk−1 + 1]q
|j0, j1, . . . jk−1, j

′, jk+1, . . . jN ,m〉,

(77)

where |j,m〉 = 0 if ji < 0 for some i . Note that for k = 1 the formula (77) therefore
simplifies to

E1|j,m〉 = −δ0,j2 [2]q |j,m〉, (78)

where we have used the expressions∣∣∣∣ 1
2

1
2 1

α1 α2 m

∣∣∣∣
q

= q
α1−α2

2

([
3
2 + 2α1α2

]
[2]

) 1
2

,

∣∣∣∣ 1
2

1
2 0

α1 α2 0

∣∣∣∣
q

= −2α1q
−α1/[2]

1
2 . (79)
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Table 2. Dimensions dim �j and dim �
(5)
j for different chains of length N.

N \ j N \ j0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5

0 1
1 1
2 1 1
3 2 1
4 2 3 1
5 5 4 1
6 5 9 5 1
7 14 14 6 1
8 14 28 20 7 1
9 42 48 27 8 1
10 42 90 75 35 9 1

0 1
2 1 3

2

0 1
1 1
2 1 1
3 2 1
4 2 3
5 5 3
6 5 8
7 13 8
8 13 21
9 34 21
10 34 55

Thus, E1 is a diagonal matrix in the path basis. From expression (77), one can now directly
read off the previously stated properties of the action of the Temperley–Lieb algebra and
the Hamiltonian. As far as the Temperley–Lieb action is concerned, one may disregard the
magnetic quantum number m in (74) and concentrate on the subspaces

�j := {j ∈ �|j = (0, 1/2, j2, . . . , jN−1, jN = j)} (80)

with the fixed end point j which according to (77) are invariant. In an analogous fashion we
define for q = exp(iπ/r) with r integer the set

�
(r)
j := �(r) ∩ �j . (81)

The representations �j and �
(r)
j can respectively be shown to be equivalent to the finite-

dimensional irreducible representations of the Temperley–Lieb algebra at generic q and at
roots of unity qr = −1 given, for example, in [22–25] and references therein. We discuss an
alternative, graphical description of the irreducible representations of T LN(q) in appendix A.

When decomposing the Hilbert space V ⊗N into the irreducible representations πj of the
quantum group for generic q, the following multiplicities µj occur which coincide with the
dimension of the path space �j ,

dim �j = µj :=
(

N

N/2 − j

)
−

(
N

N/2 + j + 1

)
. (82)

For q = exp(iπ/r) with r integer �3, the dimensions of the irreducible representations �
(r)
j

are obtained via the formula,

dim �
(r)
j =

∞∑
k=−∞

µj+rk, (83)

where the sum always turns out to contain only a finite number of non-vanishing terms, since(
m

n

) = 0 for n < 0 or n > m. An illustration of the multiplicities is given in table 2.

4.3. Path basis construction of η at roots of unity

We are now in the position to construct the map η described in the introduction which will
allow us to establish quasi-Hermiticity for the Hamiltonian (7). As a preparatory step, we first
introduce the path basis with respect to the Hermitian adjoint Hamiltonian H ∗. Using the time
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reversal operator (i.e. complex conjugation with respect to the spin basis (33)) we define the
conjugate path basis

|j,m〉T := T |j,m〉 =
∑

|α|=m

|α〉 〈α|j,m〉, j ∈ �, m = −jN,−jN + 1, . . . , jN .

(84)

Using the unitarity relation∑
m,α

∣∣∣∣j 1
2 j ′

m α m′

∣∣∣∣
q

∣∣∣∣j 1
2 j ′′

m α m′′

∣∣∣∣
q

= δj ′,j ′′δm′,m′′ (85)

we have the following identities:

T 〈j,m|j ′,m′〉 = δm,m′
∏
k

δjk,j
′
k

and 1 =
∑
j,m

|j,m〉T 〈j,m| . (86)

The above relations hold for all values of q on the unit circle. In particular, the completeness
relation (the second identity in (86)) continues to be true when q is a root of unity,
q = exp(iπ/r) with r integer �3, and the path space is reduced to (76). For the remainder of
this section we shall assume that we are at such a special root of unity value.

Definition 4.1 (η at roots of 1). Let q = eiπ/r with r > 2 and integer. Then we define the
quasi-Hermiticity operator η to be

η =
∑
j,m

|j,m〉T T〈j,m|, (87)

where the sum ranges over all restricted paths j ∈ �(r) defined in (76) and m over the values
given in (84).

By definition, η is positive definite. Its expression in terms of projectors onto path states
is reminiscent of similar expressions in terms of bi-orthonormal systems of eigenvectors as
they can be found in the literature on PT -symmetry and quasi-Hermiticity; compare with
(65), (66) and (67). We wish to stress, however, that the path states are not eigenvectors of the
Hamiltonian and that they are explicitly given through the CG coefficients (71), (72) and (84).
Thus, we have a non-perturbative, exact and explicit expression for the quasi-Hermiticity
operator η without having to rely on the construction of the eigenvectors of the Hamiltonian.
To emphasize this point even further, we explicitly state the matrix elements of η in the local
spin basis,

〈α|η|β〉 =
∑
j,m

〈α|j,m〉 〈β|j,m〉

=
∑
j,m

M−1∏
k=1

∣∣∣∣ jk
1
2 jk+1

mk αk+1 mk+1

∣∣∣∣
q

∣∣∣∣ jk
1
2 jk+1

m′
k βk+1 m′

k+1

∣∣∣∣
q

. (88)

It remains to show that the map η defined by (87) intertwines the Hamiltonian (7) with its
Hermitian adjoint. In fact, we find that it obeys more stringent conditions.

Proposition 4.1. As before, let q = exp(iπ/r) with r an integer >2. Then the map η defined
in (87) satisfies the identity

ηEk = E∗
k η. (89)
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Here {Ek}N−1
k=1 are the Temperley–Lieb generators (13) in the representation (77) and under the

restriction (76). In addition, the following equalities hold for the quantum group generators:

ηS± = (S∓)∗η = S±
opη and [η, Sz] = 0. (90)

Again these identities are valid only after the reduction of the state space according to (76)
has been imposed.

Proof. In order to derive the first identity we note that the matrix elements of the Temperley–
Lieb generators in (77) are real numbers as long as all q-integers appearing in the above
equation (77) are positive. This is guaranteed by the choice of q and the restriction of the
paths to the Bratelli diagram �(r) in (76). This explains the first equality in the sequence

ηEk |j,m〉 = T Ek |j,m〉 = E∗
k T |j,m〉 = E∗

k η |j,m〉 . (91)

The second equality follows from the observation that the Temperley–Lieb generators are
represented as symmetric matrices. The final equality arises simply from the definition (87).
Together with the fact that the path states form a basis this proves (89). In a similar fashion
one proves the second identity for the quantum group generators. �

We then have as a trivial consequence of the above proposition the desired property

ηH = H ∗η, H =
N−1∑
k=1

Ek. (92)

Thus, we have also demonstrated that H is indeed quasi-Hermitian and that (87) defines the
physically relevant inner product (3) with respect to which H is Hermitian. This is particularly
important for the calculation of physically relevant quantities such as correlation functions
where one considers matrix elements of local operators [26]. While the expression (88) is
especially convenient for numerical computations, an alternative formulation in terms of the
relevant algebras would be desirable in order to apply more powerful mathematical techniques.
In light of (89) and (90), we can immediately conclude that η cannot be expressed in terms of
the quantum group or Temperley–Lieb algebra (see (32)). We therefore turn our attention to
the C-operator.

5. The C-operator

In the context of PT -symmetry, Bender and collaborators introduced the C-operator in order
to construct a well-defined inner product with respect to which the Hamiltonian becomes
Hermitian (for references see [6]). It is now understood that this approach is a special case of
quasi-Hermiticity.

Definition 5.1 [the C-operator]. Given a positive, Hermitian and invertible map η : H → H

with ηH = H ∗η, the C-operator is defined to be the linear map

C = Pη, (93)

where P is the previously defined parity operator which is assumed to obey (38).

An immediate consequence of the above definition is the relation

[H,C] = 0. (94)

It should be clear that the choice of the parity operator in (93) is only dictated by convenience.
For instance, in the present case—due to (42)—we might equally well choose the spin-reversal
operator R instead of P which leads to a second, alternative definition.
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Definition 5.2 (the C′-operator). For given η as in the previous definition, we set

C ′ = Rη. (95)

Again we have that [H,C ′] = 0. In contrast, the choice of the time reversal operator T for the
definition of C would not be on the same footing, because T is antilinear. In the literature on
PT -symmetry, one usually finds the additional requirement that C is an involution, i.e.

C2 = 1 (96)

or equivalently that

PηP = η−1. (97)

In many examples this turns out to be true. In particular, if (38) holds and a bi-orthonormal
eigensystem (65), (66) can be chosen such that Pφλ = ψλ, the properties (96) and (97)
immediately follow from (67). Nevertheless, (96) is not a fundamental property necessary to
ensure that the inner product (3) is well defined. For this reason we have not included this
property in the definition of C. However, we will show below that (96) does indeed hold true
in the present construction and that the analogous relation is satisfied by C ′ as well.

Our motivation to consider the two aforementioned C-operators becomes clear when
looking at their commutation relations. As we well discuss below, the operator C commutes
with the quantum group action while C ′ commutes with the Temperley–Lieb action. We
will use these commutation relations to describe the properties of C,C ′ and give algebraic
construction for both.

5.1. Properties and identities of the C-operators

We start the discussion with the operator C ′ as its action in the path basis is considerably
simpler than the action of C. In the second step, we shall then use these results to find an
elegant algebraic expression for the operator C in terms of the Hecke algebra.

Theorem 5.1. Let q = exp(iπ/r) with r integer �3 and η be the previously defined sum over
projectors in the path basis (87). Set C ′ = Rη with R the spin-reversal operator. Then

C ′|j,m〉 = (−)
N
2 −jN |j,−m〉, (98)

where jN is the endpoint of the path j. Thus, we have in particular that C ′2 = 1 or equivalently

RηR = η−1. (99)

According to (69) and (98) the operator C ′ can be expressed on �
(r)
j in terms of the quantum

group generators as

C ′|
�

(r)
j

= (−)
N
2 −j

∑
m∈ 1

2 N

[j − m]q!

[j + m]q!

(S−)2mδSz,m + (S+)2mδSz,−m

2δ0,m
. (100)

This gives an expression for C ′ which is independent of the path basis.

Proof. First we note from (89) and (45) that C ′ = Rη commutes with the Temperley–Lieb
algebra and hence we can conclude from (32) that C ′ ∈ U . Since each subspace �

(r)
j of

restricted paths with the same endpoint jN = j forms an irreducible, faithful representation
of the Temperley–Lieb algebra, it suffices to compute the action of C ′ on |j ′,m〉 for some
special path j ′ ∈ �

(r)
j in order to infer its action on any path state |j,m〉, j ∈ �

(r)
j . In other

words, C ′ can at most change the magnetic quantum number m but not the actual path j in a
path state |j,m〉.
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For given jN let us pick the path j ′ on the Bratelli diagram which alternates a maximal
number of times between j = 0 and j = 1/2 before increasing monotonically to j = jN (for
example, if N = 6 and j6 = 2, we would choose j ′ = (0, 1/2, 0, 1/2, 1, 3/2, 2)). Then the
path states |j ′,±jN 〉 consist of the following linear combination of vectors in the spin basis,

|j ′,±jN 〉 =
∑
αk

∣∣α1,−α1, . . . , αN−2jN
,−αN−2jN

,± 1
2 , . . . ,± 1

2︸ ︷︷ ︸
2jN

〉 N
2 −jN∏
k=1

(
−2αkq

−αk

[2]1/2
q

)
. (101)

Here we have used the following identities for the Clebsch–Gordan coefficients in the path
basis expansion (74),

N
2 −jN∏
k=1

∣∣∣∣ 1
2

1
2 0

αk −αk 0

∣∣∣∣
q

∣∣∣∣0 1
2

1
2

0 αk+1 αk+1

∣∣∣∣
q

=
N
2 −jN∏
k=1

(
−2αkq

−αk

[2]1/2
q

)
(102)

and
2jN −1∏
k=0

∣∣∣∣∣
k
2

1
2

k+1
2

± k
2 ± 1

2 ± k+1
2

∣∣∣∣∣
q

= 1. (103)

From the above expressions one now easily verifies that

C ′|j ′, jN 〉 = R|j ′, jN 〉T = (−)
N
2 −jN |j ′,−jN 〉. (104)

But (90) and (43) now imply

C ′|j ′,m〉 = NmC ′(S−)jN−m|j ′, jN 〉 = Nm(S+)jN −mC ′|j ′, jN 〉
= (−)

N
2 −jNNm(S+)jN−m|j ′,−jN 〉 = (−)

N
2 −jN |j ′,−m〉. (105)

Here Nm = √
[jN + m]q!/[2jN ]q![jN − m]q! is some unimportant normalization constant

(see (69)). Expression (100) now also follows from this result. Note that (100) is consistent
with the quantum Schur–Weyl duality (32), C ′ ∈ U , since the Kronecker δ-functions can be
rewritten in terms of the quantum group generators q±Sz

,

δSz,±m = r−1
r∑

k=1

q4(m∓Sz)k. (106)

�

From the above theorem we infer that the action of C ′ is surprisingly simple; a result
which is not obvious given the expression (87) involving a sum of projectors. However, we
stress that the simple action (98) is special to the path basis construction.

We now state the analogous result for the C-operator and give its explicit algebraic form.

Theorem 5.2. Let η be defined as before and set C = Pη. Then we have that

[C,C ′] = 0 and C2 = 1. (107)

Furthermore, upon restriction to the invariant subspaces �
(r)
j the following operator identity

holds:

C|
�

(r)
j

= χjB, χj ∈ C. (108)

Here B denotes the image of the following special braid β under the representation (19)
respectively (77) induced via (17),

β = β1β2 · · · βN−1, βn = bnbn−1 · · · b1. (109)
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Proof. From the transformations (90) and (40) we infer that the C-operator is quantum group
invariant, [C,U] = 0. That is, according to the quantum analogue of Schur–Weyl duality (32)
we must have C ∈ H. We already saw in the proof of the previous theorem that [C ′,H] = 0,
whence C ′ ∈ U . Hence, the first assertion, [C,C ′] = 0, trivially follows from (32). But
due to the fact that [P,R] = 0, the commutation of the two C-operators is equivalent to
C2 = C ′2 = 1 (see theorem 5.1).

The last assertion (108) is now deduced by first noting that (44) and (89) imply that C
obeys

CEk = PηEk = EN−kC. (110)

In other words, C corresponds to parity reversal within the Temperley–Lieb algebra, i.e. it
implements the algebra automorphism γ : ek → eN−k . A similar relation holds for the Hecke
algebra generators via (17). The representation B of the braid β in (109) invokes the same
automorphism,

bjβ = βbN−j , 1 � j < N, (111)

which can be verified directly on the abstract algebra level using the relation

bjβj−1βj = βj−1βjb1. (112)

The last identity is most easily checked graphically by identifying the bi’s with the generator
of Artin’s braid group acting on N strings. β is also invertible, and we can conclude that CB−1

commutes with the Temperley–Lieb action. Hence, we must have

CB−1|
�

(r)
j

= χj

for some scalar χj ∈ C. This completes the proof. �

In order to completely fix the algebraic expression for C we need to compute the missing
scalar factors χj on each invariant subspace �

(r)
j . Due to the fact that C2 = 1 the latter

are simply determined by computing the value of the central element B2 on each �
(r)
j . In

appendix B, we present this computation for q generic on the unrestricted path space �j using
diagrammatic techniques. Here we argue that this result extends to the root of unity case as
well.

Lemma 5.1. Let β ∈ HN(q) be defined as in (109). Denote by �
(r)
j the irreducible

representation given by restricting (77) to �
(r)
j , i.e. all restricted paths on the Bratelli diagram

ending at j . Then

�
(r)
j (β2) = q− N(N−4)

2 −2j (j+1) (113)

and hence

χj = q
N(N−4)

4 +j (j+1) (114)

in theorem 5.2.

Proof. We start from the result that πj (β
2) = q− N(N−4)

2 −2j (j+1) for generic q on the irreducible
subspace �j (see appendix B for the proof). Since B2 remains central when taking the limit
q → q ′ with q ′ = exp(iπ/r), r integer �3, it suffices to evaluate B2 on any path which will
belong to the restricted subspace �

(r)
j . Obviously, there always exists such a path, for instance

take the path j ′ from (101) in the proof of theorem 5.1. This fixes χj in (108) up to a sign.
We take the same (principal) branch as used in the matrix elements (88) of η. �

For illustration we state in table 3 below the powers occurring in (113) for some examples.
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Table 3. Negative powers y of q occurring in the restriction β2|�j
= q−y .

N j 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2 5

3 0 6
4 0 4 12
5 4 10 20
6 6 10 18 30
7 12 18 28 42
8 16 20 28 40 56
9 24 30 40 54 72
10 30 34 42 54 70 90

\

5.2. The case when q is not a root of unity

Somewhat paradoxically the case when q is on the unit circle but not a root of unity is simpler
from an algebraic point of view and yet the discussion of quasi-Hermiticity in terms of the
path basis becomes more involved. This is due to the fact that the restriction (76) on the paths
on the Bratelli diagram is lifted, and the q-integers appearing in the representation (77) can
now change sign as the path progresses. Namely, parametrizing as before q = exp(iπ/r) but
now with r ∈ R we have

[2j + 1]q > 0, 2�r < 2j + 1 < (2� + 1)r,
(115)

[2j + 1]q < 0, (2� + 1)r < 2j + 1 < (2� + 2)r, [2j + 1]q > 0, � = 0, 1, 2, . . . .

Thus, positivity of the q-integers along a path j ∈ � is only guaranteed as long as r > N . For
this segment of the unit circle the previous constructions and results apply verbatim, with the
exception that the Hamiltonian is diagonalizable without any restriction being placed on the
state space.

6. Conclusions

In this paper, we have carried out a detailed and exact analysis of PT symmetry and quasi-
Hermiticity for the quantum group symmetric XXZ spin chain. This model has two key
advantages as a laboratory for the in-depth investigation of these ideas: it is finite-dimensional,
and it is exactly solvable. As a consequence of the latter property, there is a well-developed
and rich algebraic description of this model. We have used this algebraic machinery in order to
construct an exact expression for the η operator, whose key property ηH = H ∗η demonstrates
the quasi-Hermiticity of the model for q a root of unity. In order to develop this construction,
we have been inevitably led to carry out the procedure of quantum group reduction. We have
thus constructed η, given by equation (87), in terms of the path basis in which this reduction
is well defined. Moreover, this construction linked the question of determining whether H is
quasi-Hermitian to the mathematical problem of finding a self-adjoint representation of the
Temperley–Lieb algebra.

Bender and others have introduced the idea of a C operator in the discussion of PT
symmetry [6] which is closely connected with the notion of quasi-Hermiticity [9]. We too
have defined such a C operator as C = Pη (P is the parity operator as discussed in the main
text). This operator is very natural from an algebraic point of view, and has the realization in
terms of the braid β given by (108).
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Table 4. Commutation relations for the operator η and the two C-operators.

Operator Hamiltonian Temperley–Lieb Quantum group

η ηH = H ∗η ηEk = E∗
k η ηS± = S±

opη

C = Pη [C, H ] = 0 CEk = EN−kC [C, S±] = [C, Sz] = 0
C′ = Rη [C′, H ] = 0 [C′, Ek] = 0 C′S± = S∓C′, C′Sz = −SzC′

Two algebras appear in the description of the quantum spin chain: the quantum group
and the Temperley–Lieb. The quantum version of Schur–Weyl duality tells us that each is the
commutant of the other. The algebraic construction of C combined with this duality led us
naturally to define a new operator C ′ = Rη (here R is the spin-reversal operator) with similar
but dual properties to C and with [C ′, C] = 0. These properties are summarized in table 4.

We have given a construction of η, and thus a proof of the reality of the spectrum of (7),
that is valid for q = exp(iπ/r) for two regions: r an integer �3; and r > N (see section 5.2).
It is commonly assumed that the spectrum of the model is also real for q on the unit circle
outside this region (see, e.g., [14]). To the best of our knowledge this assumption is based on
numerical investigations of the Bethe ansatz equations and a rigorous proof of this assertion
is missing. (Obviously, the spectrum is also real when q ∈ R, for which the Hamiltonian
is Hermitian with respect to the original canonical inner product on V ⊗N .) Clear questions
remain as to whether the model is also quasi-Hermitian in this region, whether there is a clear
criterion that shows this, and if so, whether there is a simple alternative construction of η.
Preliminary numerical tests which we have carried out seem to indicate that one in general
has to drop the more stringent condition that η intertwines the Temperley–Lieb generators, i.e.
ηEk = E∗

k η.
Finally, we point out that we have also omitted the case r = 2 or q = √−1 from our

discussion as this case is rather special. The quantum group reduction as discussed here does
not apply to this case and the corresponding question of quasi-Hermiticity will be investigated
in a separate publication [27].
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Appendix A. Kauffman diagrams and Levy’s reduced words

In this appendix we review briefly the known graphical calculus associated with the Temperley–
Lieb algebra and give a characterization of its irreducible representations which is slightly
different from that in the main text. We then will employ this graphical calculus in appendix
B to compute the values of the central element β2 defined in equation (109) of theorem 5.2.

We follow ideas put forward by Kauffman [28], and we adopt the conventions of [29]
to describe the irreducible representations of T LN(q) using primitive left ideals of the
Temperley–Lieb algebra. In what follows we let q be generic, i.e. we treat q as a formal
indeterminate.
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Definition A.1 (Levy [29]). A word w = ei1ei2 · · · ein ∈ T LN(q) in the Temperley–Lieb
generators is said to possess a ‘jump’ if the indices of two neighbouring generators differ by
more than one, i.e. |ik − ik+1| > 1 for some k = 1, . . . , n − 1.

Obviously, the maximum value kmax of jumps which can occur in a word w is
kmax = �N/2� − 1, where �N/2� is the integer part of N/2.

Definition A.2 (Levy). Let Ik ⊂ T LN(q) be the left primitive ideal consisting of all words
having at least k jumps. Setting I−1 ≡ T LN(q) we define for each −1 < k < kmax the (vector
space) quotient

Wk = Ik/Ik+1, (A.1)

i.e. the set of all words which have precisely k jumps. For k = −1 we have W−1 = C and for
k = kmax we set Wkmax = Ikmax .

Regarded as a vector space, Wk is equipped with a natural action of T LN(q) and gives
rise to an irreducible representation,

ρk : T LN(q) → End Wk, a 	→ ρk(a) with ρk(a)w := aw. (A.2)

In order to identify the representations ρk with the correct path representation �j over �j given
in the main text—see (77) and (80)—we need to compare dimensions. To this end we follow
Levy and introduce for each Wk a basis in terms of the reduced words

w(m)
n = emem−1 · · · en, m > n (A.3)

defining the basis elements to be

wm1,...,mk+1 = w
(m1)
1 w

(m2)
3 · · · w(mk+1)

2k+1 , 1 � m1 < · · · < mk+1 � N − 1, mi > 2i − 1.

(A.4)

From this basis definition, one computes the corresponding dimensions to be

dim Wk =
(

N − 1

k + 1

)
−

(
N − 1

k − 1

)
. (A.5)

Upon comparing this result with the multiplicity formula (82) on the Bratelli diagram one can
conclude that the following representations are isomorphic:

Wk
∼= �j=N/2−k−1. (A.6)

Our motivation for introducing the representations ρk is that they allow for a convenient
graphical calculus. For given k, each basis element in (A.4) corresponds to a diagram of
k + 1 (possibly nested) caps and N − 2(k + 1) vertical lines on which the Temperley–Lieb
generators ei act in a simple manner. We demonstrate this for a simple example to keep this
paper self-contained.

A.1. Example N = 6

Let the identity element in T LN(q) correspond to a diagram consisting of N = 6 strands and
each Temperley–Lieb generator ek be represented by a diagram similar to that for e3 depicted
in the figure below,

(A.7)

The algebra multiplication corresponds to composing diagrams from below. The basis
elements (A.4) spanning Wk should be considered as equivalence classes of words. By



PT symmetry on the lattice: the quantum group invariant XXZ spin chain 8867

abuse of notation we denote them by the same symbols as the algebra elements. Since Ik is a
left ideal and the algebra action in (A.2) is defined to be from the left it suffices to depict the
elements (A.4) by the bottom half of their respective diagrams. For instance for N = 6 and
k = kmax = 2 we have the five words

e1e3e5 = , e1 e4e3 e5 = , (A.8)

e2e1 e3 e5 = , e2e1 e4e3 e5 = , (A.9)

and

e3e2e1 e4e3 e5 = . (A.10)

The action of the Temperley–Lieb algebra on these five diagrams from below leads to simple
permutations of the basis elements. For example acting with e2 on the first diagram we obtain

= . (A.11)

Any closed loops occurring in this process yield factors −(q + q−1) according to the defining
relation e2

i = −(q + q−1)ei .

Appendix B. Computation of β2

We now turn to the graphical computation of the central element β2 ∈ HN(q) involving the
braid β defined in (109). The Hecke algebra generators also have a graphical representation.
Namely, each generator bi acts on the identity diagram of N parallel strands by crossing the
ith strand over the (i + 1)th one. For b−1

i the (i + 1)th strand is on top. The braid β has then
the following graphical depiction,

β =

N21

(B.1)

where the NW-SE lines cross over the NE-SW lines. In order to compute the action of β2

on the basis elements in Wk
∼= �j=N/2−k−1 we need further graphical rules. All of them are

a direct consequence of the homomorphism (17) which graphically amounts to the following
equality of diagrams,

= q +
(B.2)
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An analogous picture holds for the relation b−1
i → q + ei . Repeated use of these relations

together with the defining relations of the Temperley–Lieb generators now yields the following

Lemma B.1. Employing identification (17) one verifies the following identities

• biei = −qei; compare with the depiction below.

= q
(B.3)

• bibi±1ei = q−1ei±1ei; see the pictures below.

= q = q
(B.4)

Proof. A trivial computation follows either directly from the identification (17), or from the
graphical rule (B.2) together with the identification of a complete circle with the coefficient
−(q + q−1). �

We are now in a position to derive the values of the central element β2 in the irreducible
representation (77) over the path space �j .

Lemma B.2. Assume q to be generic and let β ∈ HN(q) be defined as in (109), i.e.

β = β1β2 · · · βN−1, βn = bnbn−1 · · · b1.

Denote by �j the irreducible representation given by (17) and restricting (77) to �j , i.e. all
paths on the Bratelli diagram ending at j . Then

�j (β
2) = q− N(N−4)

2 −2j (j+1). (B.5)

Proof. According to our remarks in appendix A we can exploit the fact that for generic q the
finite-dimensional irreducible representations of T LN(q) respectively HN(q) are determined
by their dimensions up to isomorphism. Since β2 is central, its value does not depend on the
particular choice of the representation as long as we stay in the same isomorphism class. We
can therefore identify Wk

∼= �j=N/2−k−1 and compute the action of β on the reduced words
in Wk, where it is particularly simple. According to Schur’s lemma it does not matter which
word we use and we focus our attention on the word w1,3,5,...,2k+1 depicted below,

. . . . . .

k+1 (B.6)
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Acting with β on this word from below we obtain the diagram shown here

. . .. . .

k+1

(B.7)

We will now undo this braid in a number of successive steps using the diagrammatic rules of
the preceding lemma. We start with the left most cap. Employing rule (i) of the preceding
lemma we untwist it once and obtain a factor −q. Applying rule (ii) from the previous lemma
we pull it over N − 2 NE-SW lines producing the factor −q3−N . The resulting diagram is
depicted below.

. . .. . .

k

q

(B.8)

Thus, we are back at the starting point, but now with a diagram which has one less cap.
Repeating the same steps as before we end up with the diagram

. . .

k+1

q
k+1

(B.9)

from which all caps are removed. In the remaining graph we need to undo all the crossings
of lines according to (B.2). However, we can discard all the terms which introduce additional
caps since according to (A.1) these are identified with zero under the quotient. Thus, each of
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the (N − 2k − 3)(N − 2k − 2)/2 vertices in the diagram (B.9) yields a factor q−1 and we end
up with the diagram

(−1)k+1q−N(N−2k+3)/2−k(k+1) . . . . . .
(B.10)

Up to a factor, we have simply obtained the diagram reflected about the vertical axis. By
reflection symmetry we deduce that applying β twice simply produces the q-factor in (B.10)
to the power two. Upon replacing k + 1 = N/2 − j according to (A.6) we obtain the desired
result. �

Appendix C. Derivation of the Clebsch–Gordan coefficients

In this section, we derive the Clebsch–Gordan coefficients (71), (72) entering the definition of
the path basis vectors (74) according to (75). We use the convention (69) for the irreducible
representations of the quantum group Uq(sl2). We include these details as some derivations
in the literature are known to contain minor errors.

C.1. The CG coefficients for J = j + 1/2, j1 = j, j2 = 1/2

We start with the representation πj+1/2 ⊂ πj ⊗ π1/2 and take as a highest weight vector

|J,M = J 〉 = |j, j 〉 ⊗ ∣∣ 1
2 , 1

2

〉
. (C.1)

Successive action with �(S−) on the highest weight vector yields the expression

�(S−)m|J, J 〉 = qj− m−1
2 [m]

(
[2j ]![m − 1]!

[2j − m + 1]!

) 1
2

|j, j − m + 1〉 ⊗ ∣∣ 1
2 ,− 1

2

〉
+ q− m

2

(
[2j ]![m]!

[2j − m]!

) 1
2

|j, j − m〉 ⊗ ∣∣ 1
2 , 1

2

〉
=

(
[2J ]![m]!

[2J − m]!

) 1
2

|J, J − m〉 =
(

[2j + 1]![m]!

[2j − m + 1]!

) 1
2

|J, J − m〉. (C.2)

From this formula we infer the first identity (71) for the CG coefficients.

C.2. The CG coefficients for J = j − 1/2, j1 = j, j2 = 1/2

We now turn to the representation πj−1/2 ⊂ πj ⊗ π1/2. The highest weight vector is now
determined by the relation (the factor q−1/2 is introduced to obtain a more symmetric expression
for the CG coefficients)

0 = �(S+) |J, J 〉 = �(S+)
{
q− 1

2 |j, j 〉 ⊗ ∣∣ 1
2 ,− 1

2

〉
+ γ q− 1

2 |j, j − 1〉 ⊗ ∣∣ 1
2 , 1

2

〉}
(C.3)

and one easily finds

γ = − qj+ 1
2

[2j ]
1
2

. (C.4)
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In a similar manner as above, one proves by induction that

�(S−)m|J, J 〉 = q− m+1
2 [2j − m]

(
[2j − 1]![m]!

[2j ][2j − m]!

) 1
2

|j, j − m〉 ⊗ ∣∣ 1
2 ,− 1

2

〉
− qj− m

2

(
[2j − 1]![m + 1]!

[2j ][2j − m − 1]!

) 1
2

|j, j − m − 1〉 ⊗ ∣∣ 1
2 , 1

2

〉
=

(
[2J ]![m]!

[2J − m]!

) 1
2

|J, J − m〉 =
(

[2j − 1]![m]!

[2j − m − 1]!

) 1
2

|J, J − m〉. (C.5)

From this result we read off∣∣∣∣j 1
2 j − 1

2
m α m + α

∣∣∣∣
q

= −2αqα(j+1)+ m
2

(
[j − 2αm]

[2j ]

) 1
2

. (C.6)

In order to have the crucial identity∑
m,α

∣∣∣∣j 1
2 j ′

m α m′

∣∣∣∣
q

∣∣∣∣j 1
2 j ′′

m α m′′

∣∣∣∣
q

= δj ′,j ′′δm′,m′′ (C.7)

we renormalize the CG coefficients by the factor −√
[2j + 1]/[2j ] such that we obtain the

second identity (72).

C.3. Identities involving the CG coefficients

For the derivation of (77) one requires the following set of identities, which we list without
proof.∣∣∣∣∣j ± 1

2
1
2 j

m + α −α m

∣∣∣∣∣
q

= ∓2αq−α

√
[2j + 1]

[2j + 1 ± 1]

∣∣∣∣∣j
1
2 j ± 1

2

m α m + α

∣∣∣∣∣
q∣∣∣∣∣j

1
2 j ± 1

2

m α m + α

∣∣∣∣∣
q

∣∣∣∣∣j ± 1
2

1
2 j ± 1

m + α −α m

∣∣∣∣∣
q

= q2α

∣∣∣∣∣j
1
2 j ± 1

2

m −α m − α

∣∣∣∣∣
q

∣∣∣∣∣ j ± 1
2

1
2 j ± 1

m − α α m

∣∣∣∣∣
q∣∣∣∣∣j

1
2 j ± 1

2

m α m + α

∣∣∣∣∣
q

∣∣∣∣∣j ± 1
2

1
2 j

m + α −α m

∣∣∣∣∣
q

= −q−2α(2j+1)

[
j ± 2αm + 1±1

2

][
j ∓ 2αm + 1±1

2

]
∣∣∣∣∣j

1
2 j ± 1

2

m −α m − α

∣∣∣∣∣
q

∣∣∣∣∣ j ± 1
2

1
2 j

m − α α m

∣∣∣∣∣
q∑

j ′=j±1/2

[2j ′ + 1]
1
2

∣∣∣∣∣j
1
2 j ′

m α m + α

∣∣∣∣∣
q

∣∣∣∣∣ j ′ 1
2 j

m + α α m + 2α

∣∣∣∣∣
q

= 0

∑
j ′=j±1/2

± [2j ′ + 1]
1
2

∣∣∣∣∣j
1
2 j ′

m α m + α

∣∣∣∣∣
q

∣∣∣∣∣ j ′ 1
2 j

m + α −α m

∣∣∣∣∣
q

= −2αq−α[2j + 1]
1
2
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